Automatic Brittle Fracture Ratio Estimation Using Convolutional Neural Network Regression Based on Classmap Regulation
نویسندگان
چکیده
A convolutional neural network (CNN) based regression is proposed for estimating the brittle fracture ratio (BFR) in a image of drop weight tear test (DWTT) specimen. Different with previous complex semantic segmentation-based estimator, method extracts feature vector through global average pooling map and calculates BFR directly fully connected layer. By removing decoder network, number weights, training time, required GPU memory dramatically reduced. To train CNN, new loss function, which sum L1-norm between class activation ground truth inspection error, also designed. validate present method, images 1532, 79, 158 DWTT specimens obtained from real industrial site were used training, validation, test, respectively. The accuracy was evaluated on samples an error 5% or less divided by total samples, measure application. Despite having reduced weights inference time 85.8% 64.8%, respectively, has higher (96.2%) compared to that existing segmentation estimation (94.9%).
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملAge Estimation Based on Multi-Region Convolutional Neural Network
As one of the most important biologic features, age has tremendous application potential in various areas such as surveillance, human-computer interface and video detection. In this paper, a new convolutional neural network, namely MRCNN (Multi-Region Convolutional Neural Network), is proposed based on multiple face subregions. It joins multiple face subregions together to estimation age. Each ...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملP63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network
Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3117579